Abelian groups admitting a Fréchet–Urysohn pseudocompact topological group topology

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Imposing pseudocompact group topologies on Abelian groups

The least cardinal λ such that some (equivalently: every) compact group with weight α admits a dense, pseudocompact subgroup of cardinality λ is denoted by m(α). Clearly, m(α) ≤ 2. We show: Theorem 3.3. Among groups of cardinality γ, the group ⊕γQ serves as a “test space” for the availability of a pseudocompact group topology in this sense: If m(α) ≤ γ ≤ 2 then ⊕γQ admits a (necessarily connect...

متن کامل

Non-Abelian Pseudocompact Groups

Here are three recently-established theorems from the literature. (A) (2006) Every non-metrizable compact abelian group K has 2|K|-many proper dense pseudocompact subgroups. (B) (2003) Every non-metrizable compact abelian group K admits 22 |K| -many strictly finer pseudocompact topological group refinements. (C) (2007) Every non-metrizable pseudocompact abelian group has a proper dense pseudoco...

متن کامل

Extremal α-pseudocompact abelian groups

Let α be an infinite cardinal. Generalizing a recent result of Comfort and van Mill, we prove that every α-pseudocompact abelian group of weight > α has some proper dense α-pseudocompact subgroup and admits some strictly finer α-pseudocompact group topology. AMS classification numbers: Primary 22B05, 22C05, 40A05; Secondary 43A70, 54A20.

متن کامل

Minimal Pseudocompact Group Topologies on Free Abelian Groups

A Hausdorff topological group G is minimal if every continuous isomorphism f : G → H between G and a Hausdorff topological group H is open. Significantly strengthening a 1981 result of Stoyanov we prove the following theorem: For every infinite minimal group G there exists a sequence {σn : n ∈ N} of cardinals such that w(G) = sup{σn : n ∈ N} and sup{2 σn : n ∈ N} ≤ |G| ≤ 2, where w(G) is the we...

متن کامل

Concerning Connected, Pseudocompact Abelian Groups

It is known that if P is either the property w-bounded or countably compact, then for every cardinal a 2 w there is a P-group G such that H.G = a and no proper, dense subgroup of G is a P-group. What happens when P is the property pseudocompact? The first-listed author and Robertson have shown that every zero-dimensional Abelian P-group G with H.G > o has a proper, dense, P-group. Turning to th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Pure and Applied Algebra

سال: 2010

ISSN: 0022-4049

DOI: 10.1016/j.jpaa.2009.09.016